Transverse Single-Spin Asymmetry for Inclusive and Diffractive Electromagnetic Jets at Forward Rapidities in $p^{\uparrow}+p$ Collisions at $\sqrt{s}=200~GeV$ and 510~GeV at STAR

Xilin Liang, for the STAR Collaboration

University of California, Riverside

DIS 2022 Santiago de Compostela, Spain May 5, 2022

Supported in part by

Transverse Single-Spin Asymmetry (TSSA, A_N)

•
$$A_N = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R}$$

- pQCD predicts $A_N \sim \frac{m_q \alpha_s}{\sqrt{s}} \sim 0.001$
- Unexpectedly large A_N at forward region is observed in proton-proton collisions

References:

- R. D. Klem et al., Phys. Rev. Lett. 36, 929 (1976)
- C. E. Allgowe et al., Phys. Rev. D 65, 092008 (2002)
- D. L. Adams et al., Phys. Lett. B264, 462 466 (1991)
- I. Arsene et al., Phys. Rev. Lett. 101, 0420010 (2008)

- (STAR) J. Adam et al., Phys. Rev. D 103, 092009 (2021)
 - D. L. Adams et al., Phys. Lett. B 261, 201(1991)
- B. I. Abelev et al., Phys. Rev. Lett. 101, 222001 (2008)
- A. Adare et al., Phys. Rev. D 90, 012006 (2014)
- E.C. Aschenauer et al., arXiv:1602.03922

Possible Mechanisms for TSSA

TMDs framework:

Sivers effect :correlation between initial parton k_T and proton spin

Ref: D. Sivers, Phys. Rev. D 41, 83 (1990)

Signatures: A_N for jets or direct photons, $W^{+/-}$. Z , Drell-Yan

 Twist-3: Quark-gluon / gluon-gluon correlations and fragmentation functions.

Ref: J.W. Qiu and G. Sterman, Phys. Rev. Lett. 67 2264 (1991)

Collins effect :correlation between fragmentation hadron k_T and its parent parton spin

Ref: J. Collins, Nucl Phys B 396 (1993) 161

Signatures: Collins effect (Azimuthal asymmetry of hadrons in jets)

Indication of Large TSSA from Diffractive Process

Previous analyses of A_N for forward π^0 and electromagnetic jets in $p^\uparrow+p$ collisions at STAR indicated that there might be non-trivial contributions to the large A_N from diffractive processes.

- Inclusive π^0 A_N
- Isolated π^0 have larger A_N

- Inclusive EM-jet A_N
 - Low photon multiplicity jets have larger A_N

(2021)

RHIC: Relativistic Heavy Ion Collider

- Located at Brookhaven National Laboratory (BNL) on Long Island, NY, USA
- World's only polarized proton-proton collider
- Transverse and longitudinal polarization
- ullet Allows polarized p-p collisions for $\sqrt{s}=200$ 510 GeV

STAR Experiment at RHIC

STAR sub-detectors used in the A_N analyses

- Calorimetry system: BEMC, EEMC and FMS
 - \bullet Forward Meson Spectrometer (FMS): 2.6 $< \eta <$ 4.2 , $\phi \in (0,2\pi)$
- Roman Pot (RP) allows detection of scattered protons.
- ZDC, VPD and BBC are trigger detectors.

Datasets

Year	\sqrt{s} [GeV]	$\mathcal{L}[pb^{-1}]$	Polarization orientation	Polarization P (%)
2011	500	25	Transverse	48
2015	200	52	Transverse	57
2017	510	350	Transverse	55

- Previously published STAR analyses on inclusive EM-jet $A_{\it N}$ use 2011 and 2015 data.
 - Analyses: (STAR) J. Adam et al., Phys. Rev. D 103, 092009 (2021)
- Current inclusive and diffractive EM-jet A_N use 2015 data.
- Inclusive EM-jet A_N for 2017 data is in progress.

Inclusive EM-jet A_N at Forward Rapidity using FMS

Inclusive EM-jet production: $p^{\uparrow} + p \rightarrow \text{EM-jet} + X$

- ★ Motivation:
 - Explore potential sources of large A_N
 - Characterize EM-jet A_N as a function of EM-jet p_T , energy and photon multiplicity
- ★ EM-jet reconstruction
 - Only reconstructed FMS photon candidates as input for FastJet
 - Anti- k_T algorithm with R = 0.7
 - $E_{\gamma} > 1 \text{ GeV}$
 - EM-jet $p_T > 2 \text{ GeV/c}$
- ★ Corrections based on simulation
 - PYTHIA 6.4 Perugia 2012 with GEANT based STAR detector simulation
 - EM-jet p_T is corrected for Underlying Event using off-axis cone method
 - using off-axis cone method

 EM-jet energy is corrected to the particle level.

EM-jet A_N Extraction

- The cross-ratio method is used to calculate A_N .
- This method can take advantage of detector azimuthal symmetry and cancel effects on detector acceptance and beam luminosity.

$$\epsilon = PA_N cos(\phi) = \frac{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi + \pi)} - \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi + \pi)}}{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi + \pi)} + \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi + \pi)}}$$

DIS 2022, May 5, 2022

Inclusive EM-jet A_N at 200 and 500 GeV

- A_N of the EM-jets increases with x_F and a week energy dependence is preferred.
- EM-jets with more than 2 photons have smaller A_N than those without this requirement.

(STAR) J. Adam et al., Phys. Rev. D 103, 092009 (2021) Theory curves: L. Gamberg, Z. Kang, A. Prokudin, Phys. Rev. Lett. 110 23 232301 (2013)

Detailed Investigations of Inclusive EM-jet A_N at Forward Rapidity at 200 GeV

- The EM-jet A_N decreases with increasing photon multiplicity (jettiness)
 - A_N is the strongest for the EM-jets consisting of 1 or 2 photons.
 - A_N is lower for EM-jets consisting of 4 or 5 photons.
- A_N at $x_F < 0$ is consistent with 0.
- The systematic uncertainties (box) mainly come from possible misidentification of the event category.

Inclusive EM-jet A_N at Forward Rapidity at 200 GeV

- A_N increases with the increasing x_F .
- EM-jets consisting of 1 or 2 photons have the strongest A_N .
- EM-jets with 3 photons have non-zero A_N but smaller than that of 1-photon or 2-photon EM-jets.
- EM-jets with at least 4 photons have significantly smaller A_N .

Diffractive EM-jet A_N at Forward Rapidity

- ★ **Motivation:** Measure diffractive contributions to *A_N* in polarized p+p collisions.
- **★** 2 possible diffractive channels:
- ① Only 1 proton track on FMS side and no proton track on the away side.
- \bigodot Only 1 proton track on FMS side and only 1 proton track on away side.

- **Requirements:** The scattered proton must be detected by Roman Pot.
- ★ Limitation: They are relatively rare processes, but have been observed at STAR.

Datasets and Event Selection

- ★ Data sets: Transversely polarized p^{\uparrow} +p at \sqrt{s} = 200 GeV collected in 2015.
- ★ FMS EM-jet reconstruction
 - Only reconstructed FMS photon candidates as input for FastJet
 - Anti- k_T algorithm with R = 0.7
 - EM-jet $p_T > 1 \text{ GeV/c}$
- ★ RP track selection
 - RP track is required to be reconstructed and within geometric acceptance.
 - Two acceptable scenarios for RP tracks based on the diffractive process channels:
 - Only 1 west side RP track and 0 east side RP track
 - 2 Only 1 west side RP track and 1 east side RP track
- ★ BBC hit cuts to reduce accidental coincidences.
- ★ Energy sum cuts for diffractive process to reduce pile-up effect.
 - Energy sum: E(west side RP track) + E(EM-jet)
 - Apply different energy sum cut for each EM-jet energy region based on the energy sum spectrum.
- ★ EM-jet energy is corrected to particle level.

Diffractive EM-jet A_N at Forward Rapidity at 200 GeV

- The cross-ratio method is used to extract the diffractive EM-jet A_N .
- A non-zero A_N for $x_F > 0$ is observed with 3.3-sigma significance for diffractive process at forward rapidity.
- Large A_N is observed in high x_F region.

- Sign of A_N is negative.
 Theoretical inputs are needed to understand the different sign.
- A_N at $x_F < 0$ is consistent with 0.
- Systematic uncertainties (boxes) mainly come from cuts for reducing background events.

Note 1: All red points are shifted by -0.005 along x-axis Note 2: The rightmost point is for $0.3 < x_E < 0.45$

Conclusion

- ★ We study A_N for inclusive EM-jets with different jet substructures using the FMS at STAR in p^{\uparrow} +p collisions at 200 GeV.
 - EM-jet A_N decrease with increasing photon multiplicity (jettiness).
 - EM-jet A_N increase with increasing x_F .
- ★ We study A_N for diffractive EM-jets using the FMS at STAR in $p^{\uparrow}+p$ collisions at 200 GeV.
 - A non-zero diffractive EM-jet A_N for $x_F > 0$ is observed. Large A_N is observed in high x_F region.
 - ullet Sign of A_N is negative, which needs further theoretical study to understand.
- ★ Inclusive EM-jet A_N using larger p^{\uparrow} +p datasets taken in 2017 is underway, which will increase the statistical precision.

Back up

1/7

Forward Meson Spectrometer (FMS)

- FMS can detect photons, neutral pions, and eta mesons in the forward direction.
- $2.6 < \eta < 4.2$.

- FMS consists of 1264 Lead-Glass cells with photomultiplier tubes (PMT) readout connected, separated into two regions.
- Inner region (green) have smaller size cells than the outer region (red), which can provide better photon separation ability.
- All cells have ${\sim}18$ radiation length.

Roman Pot (RP)

- Roman Pots (RP) are vessels which house the Silicon Strip Detector planes (SSDs). They are put close to the beam pipe.
- RPs are able to detect and track slightly scattered protons close to beamline.

- 2 sets of RP (inner and outer) on each side.
- Each RP set contains a package above and below the beamline.
- 4 SSDs per package (2 x-type and 2 y-type).

Underlying Events Correction and Energy Correction

- The EM-jet p_T values are corrected for contamination from Underlying Events (UE) with off-axis cone method (right column).
- The EM-jet energy is corrected to the particle level.

Figure: Detector EM-jet energy to particle level correction

Phys Rev D **91** 112012 (2015), ALICE Collaboration

Figure: UE correction

BBC hit cuts

- Beam Beam Counter (BBC) can be used to triggering, monitoring luminosity and local polarimetry.
- BBC are located on both forward and backward side.
 - BBC: $2.1 < |\eta| < 5$.
- Benefits for cuts on BBC hits:
 - Reduce accidental coincidence events with a second interaction in the same bunch crossing.
 - Get rid of high luminosity events which may cause pile-up effect.
- The cut on forward BBC hits can increase fraction of signal significantly.

Details on BBC cuts for diffractive EM-jet A_N analysis

- Based on the sum energy $(E_{EM-jet} + E_{RPtrack})$ vs BBC ADC sum.
- Horizontal line ($E=108~{\rm GeV}$) splits signal and background region.
- Optimize the fraction of signal and background.

Energy sum cut

- Calculate energy sum: E(west side RP track) + E(FMS EM-jet) for each event.
- Apply energy sum cut based on the separation of diffractive process peak and pile-up peak. (Left plot as example)
- Pile-up peak mainly come from the events with RP track energy around 100 GeV (pile-up events).

